Companhia Ituana de Saneamento do Estado de São Paulo

CIS-SP

Motorista

Concurso Público CIS 002/2017

DZ069-2017

DADOS DA OBRA

Título da obra: Companhia Ituana de Saneamento do Estado de São Paulo - CIS/SP

Cargo: Motorista

(Baseado no Concurso Público CIS 002/2017)

- Língua Portuguesa
- Matemática e Raciocínio Lógico
 - Conhecimentos Específicos

Gestão de Conteúdos

Emanuela Amaral de Souza

Diagramação

Elaine Cristina Igor de Oliveira Camila Lopes

Produção Editoral

Suelen Domenica Pereira

Capa

Joel Ferreira dos Santos

Editoração Eletrônica

Marlene Moreno

SUMÁRIO

Língua Portuguesa

GRAMÁTICA: Frases; Pontuação; Sinais de Pontuação; Relação entre palavras; Fonemas e letras; Substantivo; Adjetivo; Separação de sílabas; Artigo; Numeral; Encontros vocálicos; Encontros consonantais e dígrafo; Verbos; Tonicidade das palavras; Sílaba tônica; Sujeito e predicado; Verbos intransitivos e transitivos; Verbos transitivos diretos e indiretos; Uso da crase; Pronomes; Formas nominais; Locuções verbais; Adjuntos adnominais e adverbiais; Termos da oração; Classes LINGUAGEM: Comparações; Criação de palavras; Uso do travessão; Discurso direto e indireto; Relações entre nome e personagem; História em quadrinhos; Relação entre ideias; Intensificações; Personificação; Oposição; Provérbios; Onomatopeias; Oposições; Repetições; Relações; Expressões ao pé da letra; Palavras e ilustrações; Metáfora; Associação de INTERPRETAÇÃO DE TEXTO.......88

Matemática e Raciocínio Lógico

Conjuntos; números naturais; sistemas de numeração; operações no conjunto dos números naturais; múltiplos e divisores em N; radiciação; máximo divisor comum; mínimo divisor comum; conjunto de números fracionários; operações fundamentais com números fracionários; problemas com números fracionários; números decimais; introdução à geometria; medidas de comprimento, superfície, volume, capacidade e massa; conjunto de números inteiros relativos; operações no conjunto dos inteiros; conjunto dos números racionais; operações fundamentais com números racionais; Avaliação de sequência lógica e coordenação viso-motora, orientação espacial e temporal, formação de conceitos, discriminação de elementos, reversibilidade, sequência lógica de números, letras, palavras e figuras. Problemas lógicos Compreensão do processo lógico que, a partir de um conjunto de hipóteses, conduz, de forma válida, a conclusões Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas para estabelecer a estrutura daquelas relações. Compreensão e elaboração da lógica das situações por meio de: raciocínio verbal, raciocínio matemático, raciocínio quantitativo e ra-

Conhecimentos Específicos

Legislação de Trânsito: Código de Trânsito Brasileiro (Lei n.º 9.503/1997)	01
Lei Federal n.º 12.619/2012,	
Lei Federal n.º 12.971/2014	
Lei Federal n.º 13.103/2016	
Resoluções do CONTRAN pertinentes à condução de veículos. Funcionamento de veículos automotor	
básicos de mecânica e de elétrica de automóveis. Manutenção de automóveis. Combustíveis. Noç	ões de segurança
individual, coletiva e de instalações.	59
Direção defensiva.	
Nocões de primeiros socorros	62

Conjuntos; números naturais; sistemas de numeração; operações no conjunto dos números naturais; múltip visores em N; radiciação; máximo divisor comum; mínimo divisor comum; conjunto de números fracionários; ções fundamentais com números fracionários; problemas com números fracionários; números decimais; intro geometria; medidas de comprimento, superfície, volume, capacidade e massa; conjunto de números inteiros operações no conjunto dos inteiros; conjunto dos números racionais; operações fundamentais com números r problemas de raciocínio lógico, problemas usando as quatro operações;	s; opera- odução à relativos; acionais; 01 onceitos, s lógicos
Compreensão do processo lógico que, a partir de um conjunto de hipóteses, conduz, de forma válida, a co determinadas	nclusões
Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas info das relações fornecidas e avaliar as condições usadas para estabelecer a estrutura daquelas relações. Compre elaboração da lógica das situações por meio de: raciocínio verbal, raciocínio matemático, raciocínio quantitat ciocínio seguencial	eensão e

CONJUNTOS; NÚMEROS NATURAIS; SISTEMAS DE NUMERAÇÃO; OPERAÇÕES NO CONJUNTO DOS NÚMEROS NATURAIS; MÚLTIPLOS E DIVISORES EM N; RADICIAÇÃO; MÁXIMO DIVISOR COMUM; MÍNIMO DIVISOR COMUM; CONJUNTO DE NÚMEROS FRACIONÁRIOS; OPERAÇÕES FUNDAMENTAIS COM NÚMEROS FRACIONÁRIOS; NÚMEROS DECIMAIS; INTRODUÇÃO À GEOMETRIA; MEDIDAS DE COMPRIMENTO, SUPERFÍCIE, VOLUME, CAPACIDADE E MASSA; CONJUNTO DE NÚMEROS INTEIROS RELATIVOS; OPERAÇÕES NO CONJUNTO DOS INTEIROS; CONJUNTO DOS NÚMEROS RACIONAIS; OPERAÇÕES FUNDAMENTAIS COM NÚMEROS RACIONAIS; PROBLEMAS DE RACIOCÍNIO LÓGICO, PROBLEMAS USANDO AS QUATRO OPERAÇÕES;

Números Naturais

Os números naturais são o modelo matemático necessário para efetuar uma contagem. Começando por zero e acrescentando sempre uma unidade, obtemos os elementos dos números naturais:

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \dots\}$$

A construção dos Números Naturais

- Todo número natural dado tem um sucessor (número que vem depois do número dado), considerando também o zero. Exemplos: Seja m um número natural.
- a) O sucessor de m é m+1.
- b) O sucessor de 0 é 1.
- c) O sucessor de 1 é 2.
- d) O sucessor de 19 é 20.
- Se um número natural é sucessor de outro, então os dois números juntos são chamados números consecutivos. Exemplos:
- a) 1 e 2 são números consecutivos.
- b) 5 e 6 são números consecutivos.
- c) 50 e 51 são números consecutivos.
- Vários números formam uma coleção de números naturais consecutivos se o segundo é sucessor do primeiro, o terceiro é sucessor do segundo, o quarto é sucessor do terceiro e assim sucessivamente.

Exemplos:

- a) 1, 2, 3, 4, 5, 6 e 7 são consecutivos.
- b) 5, 6 e 7 são consecutivos.
- c) 50, 51, 52 e 53 são consecutivos.
- Todo número natural dado N, exceto o zero, tem um antecessor (número que vem antes do número dado). Exemplos: Se m é um número natural finito diferente de zero.
- a) O antecessor do número m é m-1.
- b) O antecessor de 2 é 1.
- c) O antecessor de 56 é 55.
- d) O antecessor de 10 é 9.

Subconjuntos de N

Vale lembrar que um asterisco, colocado junto à letra que simboliza um conjunto, significa que o zero foi excluído de tal conjunto.

$$\mathbb{N}^* = \{1, 2, 3, 4, 5, \dots\}$$

Expressões Numéricas

Nas expressões numéricas aparecem adições, subtrações, multiplicações e divisões. Todas as operações podem acontecer em uma única expressão. Para resolver as expressões numéricas utilizamos alguns procedimentos:

Se em uma expressão numérica aparecer as quatro operações, devemos resolver a multiplicação ou a divisão primeiramente, na ordem em que elas aparecerem e somente depois a adição e a subtração, também na ordem em que aparecerem e os parênteses são resolvidos primeiro.

Exemplo 1

$$10 + 12 - 6 + 7$$

 $22 - 6 + 7$

23

Exemplo 2

$$40 - 9 \times 4 + 23$$

$$40 - 36 + 23$$

$$4 + 23$$

27

Exemplo 3

25-(50-30)+4x5

25-20+20=25

Números Inteiros

Podemos dizer que este conjunto é composto pelos números naturais, o conjunto dos opostos dos números naturais e o zero. Este conjunto pode ser representado por:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3,\}$$

Subconjuntos do conjunto \mathbb{Z} :

1)

$$\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3,\}$$

Este é o conjunto dos números inteiros excluindo o zero.

2)

 $\mathbb{Z}_{+} = \{0,1,2,3,\ldots\} - \textit{Este} \ \acute{e} \ \textit{o} \ \textit{conjuntos} \ \textit{dos} \ \textit{n\'umerosinteiros} \ \textit{n\~ao} - \textit{negativos}$

3

 $\mathbb{Z}_{-}=\{...,-3,-2,-1\}$ – Este é o conjunto dos números inteiros não – positivos

Números Racionais

Chama-se de núme \underline{a} o racional a todo número que pode ser expresso na forma \underline{b} , onde a e b são inteiros quaisquer, com $b\neq 0$

Assim, os números $6\left(=\frac{12}{2}\right)e$ 1,33333 $=\frac{4}{3}$ são dois exemplos de números racionais.

Representação Decimal das Frações

Temos 2 possíveis casos para transformar frações em decimais

1º) Decimais exatos: quando dividirmos a fração, o número decimal terá um número finito de algarismos após a vírgula.

$$\frac{1}{2} = 0.5$$

$$\frac{1}{4} = 0.25$$

$$\frac{3}{4}$$
0,75

2°) Terá um número infinito de algarismos após a vírgula, mas lembrando que a dízima deve ser periódica para ser número racional

OBS: período da dízima são os números que se repetem, se não repetir não é dízima periódica e assim números irracionais, que trataremos mais a frente.

$$\frac{1}{3} = 0,333...$$

$$\frac{35}{99} = 0,353535...$$

$$\frac{105}{9} = 11,6666...$$

Representação Fracionária dos Números Decimais

Trata-se do problema inverso: estando o número racional escrito na forma decimal, procuremos escrevê-lo na forma de fração. Temos dois casos:

1º) Transformamos o número em uma fração cujo numerador é o número decimal sem a vírgula e o denominador é composto pelo numeral 1, seguido de tantos zeros quantas forem as casas decimais do número decimal dado:

$$0.3 = \frac{3}{10}$$

$$0.03 = \frac{3}{100}$$

$$0.003 = \frac{3}{1000}$$

$$3,3 = \frac{33}{10}$$

2º) Devemos achar a fração geratriz da dízima dada; para tanto, vamos apresentar o procedimento através de alguns exemplos:

Exemplo 1

Seja a dízima 0, 333... .

Façamos x = 0.333... e multipliquemos ambos os membros por 10: 10x = 3.333

Subtraindo, membro a membro, a primeira igualdade da segunda:

$$10x - x = 3{,}333... - 0{,}333... \rightarrow 9x = 3 \rightarrow x = 3/9$$

Assim, a geratriz de 0,333... é a fração $\frac{3}{9}$

Exemplo 2

Seja a dízima 5, 1717... .

Façamos x = 5,1717... e 100x = 517,1717... . Subtraindo membro a membro, temos:

 $99x = 512 \rightarrow x = 512/99$

Assim, a geratriz de 5,1717... é a fração 512/99.

Números Irracionais

Identificação de números irracionais

- Todas as dízimas periódicas são números racionais.
- Todos os números inteiros são racionais.
- Todas as frações ordinárias são números racionais.
- Todas as dízimas não periódicas são números irracionais.
 - Todas as raízes inexatas são números irracionais.
- A soma de um número racional com um número irracional é sempre um número irracional.
- A diferença de dois números irracionais, pode ser um número racional.
- -Osa números irracionais não podem ser expressos na forma \overline{b} , com a e b inteiros e b \neq 0.

Exemplo:
$$\sqrt{5} - \sqrt{5} = 0$$
 e 0 é um número racional.

- O quociente de dois números irracionais, pode ser um número racional.

Exemplo:
$$\sqrt{8}$$
: $\sqrt{2} = \sqrt{4} = 2$ e 2 é um número racional.

- O produto de dois números irracionais, pode ser um número racional.

Exemplo:
$$\sqrt{5}$$
 . $\sqrt{5} = \sqrt{25} = 5$ e 5 é um número racional.

Exemplo:radicais($\sqrt{2},\sqrt{3}$) a raiz quadrada de um número natural, se não inteira, é irracional.

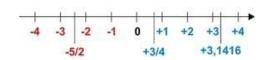
Números Reais



Fonte: www.estudokids.com.br

Representação na reta

Conjunto dos números reais



INTERVALOS LIMITADOS

Intervalo fechado – Números reais maiores do que a ou iguais a e menores do que b ou iguais a b.

Intervalo:[a,b]

Conjunto: $\{x \in R | a \le x \le b\}$

Intervalo aberto – números reais maiores que a e menores que b.

Intervalo:]a,b[Conjunto:{x∈R|a<x<b}

Intervalo fechado à esquerda – números reais maiores que a ou iguais a a e menores do que b.

Intervalo:{a,b[

Conjunto $\{x \in R | a \le x < b\}$

Intervalo fechado à direita – números reais maiores que a e menores ou iguais a b.

Intervalo:]a,b] Conjunto: $\{x \in R | a < x \le b\}$

INTERVALOS IIMITADOS

Semirreta esquerda, fechada de origem b- números reais menores ou iguais a b.

Intervalo:]- ∞ ,b] Conjunto:{ $x \in R | x \le b$ }

Semirreta esquerda, aberta de origem b – números reais menores que b.

Intervalo:]- ∞ ,b[Conjunto:{ $x \in R | x < b$ }

Semirreta direita, fechada de origem a – números reais maiores ou iguais a a.

Intervalo: $[a, + \infty[$ Conjunto: $\{x \in R | x \ge a\}$

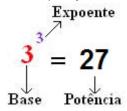
Semirreta direita, aberta, de origem a – números reais maiores que a.

Intervalo:]a,+ ∞ [Conjunto:{ $x \in R|x>a$ }

Potenciação

Os números envolvidos em uma multiplicação são chamados de fatores e o resultado da multiplicação é o produto, quando os fatores são todos iguais existe uma forma diferente de fazer a representação dessa multiplicação que é a potenciação.

2 . 2 . 2 . 2 = 16 → multiplicação de fatores iguais.



Casos

1) Todo número elevado ao expoente 0 resulta em 1.

$$1^0 = 1$$

$$5^0 = 1$$

2) Todo número elevado ao expoente 1 é o próprio número.

$$3^1 = 3$$

$$4^1 = 4$$

3) Todo número negativo, elevado ao expoente par, resulta em um número positivo.

$$(-2)^2 = 4$$

$$(-4)^2 = 16$$

4) Todo número negativo, elevado ao expoente ímpar, resulta em um número negativo.

$$(-2)^3 = -8$$

$$(-3)^3 = -27$$

5) Se o sinal do expoente for negativo, devemos passar o sinal para positivo e inverter o número que está na base.

$$2^{-1} = \frac{1}{2}$$

$$2^{-2} = \frac{1}{4}$$

6) Toda vez que a base for igual a zero, não importa o valor do expoente, o resultado será igual a zero.

$$0^2 = 0$$

$$0_3 = 0$$

Propriedades

1) $(a^m \cdot a^n = a^{m+n})$ Em uma multiplicação de potências de mesma base, repete-se a base e adiciona-se (soma) os expoentes.

Exemplos:

$$5^4 \cdot 5^3 = 5^{4+3} = 5^7$$

$$(5.5.5.5) \cdot (5.5.5) = 5.5.5.5.5.5 = 5^7$$

$$\left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{2+3} = \left(\frac{1}{2}\right)^5 = 2^{-2}.2^{-3} = 2^{-5}$$

2) (a^m : $a^n = a^{m-n}$). Em uma divisão de potência de mesma base. Conserva-se a base e subtraem os expoentes.

Exemplos:

$$9^6:9^2=9^{6-2}=9^4$$

$$\left(\frac{1}{2}\right)^2 : \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{2-3} = \left(\frac{1}{2}\right)^{-1} = 2$$

3) $(a^m)^n$ Potência de potência. Repete-se a base e multiplica-se os expoentes.

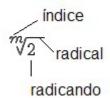
Exemplos:

$$(5^2)^3 = 5^{2.3} = 5^6$$

$$\left(\left(\frac{2}{3}\right)^4\right)^3 = \frac{2^{12}}{3}$$

Radiciação

Radiciação é a operação inversa a potenciação



Técnica de Cálculo

A determinação da raiz quadrada de um número tornase mais fácil quando o algarismo se encontra fatorado em números primos. Veja:

64-222222-26

Como é raiz quadrada a cada dois números iguais "tira-se" um e multiplica.

$$\sqrt{64} = 2.2.2 = 8$$

Observe:
$$\sqrt{3.5} = (3.5)^{\frac{1}{2}} = 3^{\frac{1}{2}}.5^{\frac{1}{2}} = \sqrt{3}.\sqrt{5}$$

De modo geral, se $a \in R_+, b \in R_+, n \in N^*$, então:

$$\sqrt[n]{a.b} = \sqrt[n]{a} \sqrt[n]{b}$$

O radical de índice inteiro e positivo de um produto indicado é igual ao produto dos radicais de mesmo índice dos fatores do radicando.

Raiz quadrada de frações ordinárias

Observe:
$$\sqrt{\frac{2}{3}} = \left(\frac{2}{3}\right)^{\frac{1}{2}} = \frac{2^{\frac{1}{2}}}{3^{\frac{1}{2}}} = \frac{\sqrt{2}}{\sqrt{3}}$$

De modo geral, se $a \in R_+, b \in R_+^*, n \in N_-^*$, então:

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

O radical de índice inteiro e positivo de um quociente indicado é igual ao quociente dos radicais de mesmo índice dos termos do radicando.

Raiz quadrada números decimais

$$\sqrt{1.69} = \sqrt{\frac{169}{100}} = \frac{\sqrt{169}}{\sqrt{100}} = \frac{13}{10} = 1.3$$

Operações

$$\sqrt{5,76} = \sqrt{\frac{576}{100}} = \frac{\sqrt{576}}{\sqrt{100}} = \frac{24}{10} = 2.4$$

Operações

<u>Multiplicação</u>

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$$

Exemplo

$$\sqrt{2} \cdot \sqrt{3} = \sqrt{6}$$

<u>Divisão</u>

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Exemplo

$$\sqrt{\frac{72}{2}} = \frac{\sqrt{72}}{\sqrt{2}}$$

Adição e subtração

$$\sqrt{2} + \sqrt{8} - \sqrt{20}$$

Para fazer esse cálculo, devemos fatorar o 8 e o 20.

$$\sqrt{2} + \sqrt{8} - \sqrt{20} = \sqrt{2} + 2\sqrt{2} - 2\sqrt{5} = 3\sqrt{2} - 2\sqrt{5}$$

Caso tenha:

$$\sqrt{2} + \sqrt{5}$$

Não dá para somar, as raízes devem ficar desse modo.

Racionalização de Denominadores

Normalmente não se apresentam números irracionais com radicais no denominador. Ao processo que leva à eliminação dos radicais do denominador chama-se racionalização do denominador.

1º Caso:Denominador composto por uma só parcela

$$\frac{3}{\sqrt{3}}$$

$$\frac{3}{\sqrt{3}} = \frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{3} = \sqrt{3}$$

2º Caso: Denominador composto por duas parcelas.

$$\frac{3}{2 - \sqrt{10}}$$

Devemos multiplicar de forma que obtenha uma diferença de quadrados no denominador:

$$\frac{3}{2-\sqrt{10}} = \frac{3}{2-\sqrt{10}} \cdot \frac{2+\sqrt{10}}{2+\sqrt{10}} = \frac{6+3\sqrt{10}}{4-10} = \frac{6+3\sqrt{10}}{-6} = -1 - \frac{1}{2}\sqrt{10}$$

MMC

O mmc de dois ou mais números naturais é o menor número, excluindo o zero, que é múltiplo desses números.

Cálculo do m.m.c.

Vamos estudar dois métodos para encontrar o mmc de dois ou mais números:

- 1) Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:
 - 1º) decompomos os números em fatores primos
- 2º) o m.m.c. é o produto dos fatores primos comuns e não comuns:

Escrevendo a fatoração dos números na forma de potência, temos:

$$12 = 2^2 \times 3$$

 $30 = 2 \times 3 \times 5$
m.m.c (12,30) = $2^2 \times 3 \times 5$

O mmc de dois ou mais números, quando fatorados, é o produto dos fatores comuns e não comuns , cada um com seu maior expoente

2) Método da decomposição simultânea Vamos encontrar o mmc (15, 24, 60)

Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura acima. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números.

Portanto, m.m.c.
$$(15,24,60) = 2 \times 2 \times 2 \times 3 \times 5 = 120$$

OBS:

- 1. Dados dois ou mais números, se um deles é múltiplo de todos os outros, então ele é o m.m.c. dos números dados
- 2. Dados dois números primos entre si, o mmc deles é o produto desses números.

MDC

Máximo divisor comum (mdc)

É o maior divisor comum entre dois ou mais números naturais. Usamos a abreviação MDC Cálculo do m.d.c

Vamos estudar dois métodos para encontrar o mdc de dois ou mais números

- 1) Um modo de calcular o m.d.c. de dois ou mais números é utilizar a decomposição desses números em fatores primos:
 - Decompomos os números em fatores primos;
 - O m.d.c. é o produto dos fatores primos comuns.

Acompanhe o cálculo do m.d.c. entre 36 e 90:

 $36 = 2 \times 2 \times 3 \times 3$

 $90 = 2 \times 3 \times 3 \times 5$

O m.d.c. é o produto dos fatores primos comuns => m.d.c.(36,90) = 2 x 3 x 3

Portanto m.d.c.(36,90) = 18.

Escrevendo a fatoração do número na forma de potência temos:

 $36 = 2^2 \times 3^2$

 $90 = 2 \times 3^2 \times 5$

Portanto m.d.c. $(36,90) = 2 \times 3^2 = 18$.

2) Processo das divisões sucessivas : Nesse processo efetuamos várias divisões até chegar a uma divisão exata. O divisor desta divisão é o m.d.c. Acompanhe o cálculo do m.d.c.(48,30).

Regra prática:

1°) dividimos o número maior pelo número menor; 48 / 30 = 1 (com resto 18)

2º) dividimos o divisor 30, que é divisor da divisão anterior, por 18, que é o resto da divisão anterior, e assim sucessivamente;

30 / 18 = 1 (com resto 12)

18 / 12 = 1 (com resto 6)

12 / 6 = 2 (com resto zero - divisão exata)

3°) O divisor da divisão exata é 6. Então m.d.c.(48,30) = 6.

OBS:

1.Dois ou mais números são primos entre si quando o máximo divisor comum entre eles é o número.

2.Dados dois ou mais números, se um deles é divisor de todos os outros, então ele é o mdc dos números dados.

Problemas

1. Uma indústria de tecidos fabrica retalhos de mesmo comprimento. Após realizarem os cortes necessários, verificou-se que duas peças restantes tinham as seguintes medidas: 156 centímetros e 234 centímetros. O gerente de produção ao ser informado das medidas, deu a ordem para que o funcionário cortasse o pano em partes iguais e de maior comprimento possível. Como ele poderá resolver essa situação?

- 2. Uma empresa de logística é composta de três áreas: administrativa, operacional e vendedores. A área administrativa é composta de 30 funcionários, a operacional de 48 e a de vendedores com 36 pessoas. Ao final do ano, a empresa realiza uma integração entre as três áreas, de modo que todos os funcionários participem ativamente. As equipes devem conter o mesmo número de funcionários com o maior número possível. Determine quantos funcionários devem participar de cada equipe e o número possível de equipes.
- 3. (PUC–SP) Numa linha de produção, certo tipo de manutenção é feita na máquina A a cada 3 dias, na máquina B, a cada 4 dias, e na máquina C, a cada 6 dias. Se no dia 2 de dezembro foi feita a manutenção nas três máquinas, após quantos dias as máquinas receberão manutenção no mesmo dia.
- 4. Um médico, ao prescrever uma receita, determina que três medicamentos sejam ingeridos pelo paciente de acordo com a seguinte escala de horários: remédio A, de 2 em 2 horas, remédio B, de 3 em 3 horas e remédio C, de 6 em 6 horas. Caso o paciente utilize os três remédios às 8 horas da manhã, qual será o próximo horário de ingestão dos mesmos?
- 5. João tinha 20 bolinhas de gude e queria distribuí-las entre ele e 3 amigos de modo que cada um ficasse com um número par de bolinhas e nenhum deles ficasse com o mesmo número que o outro. Com quantas bolinhas ficou cada menino?

Resposta

- 1. Calculamos o MDC entre 156 e 234 e o resultado é : os retalhos devem ter 78 cm de comprimento.
- 2. Calculamos o MDC entre 30, 48 e 36. O número de equipes será igual a 19, com 6 participantes cada uma.
- 3. Calculamos o MMC entre 3, 4 e 6. Concluímos que após 12 dias, a manutenção será feita nas três máquinas. Portanto, dia 14 de dezembro.
- 4. Calculamos o MMC entre 2, 3 e 6. De 6 em 6 horas os três remédios serão ingeridos juntos. Portanto, o próximo horário será às 14 horas.
- 5. Se o primeiro menino ficar com 2 bolinhas, sobrarão 18 bolinhas para os outros 3 meninos. Se o segundo receber 4, sobrarão 14 bolinhas para os outros dois meninos. O terceiro menino receberá 6 bolinhas e o quarto receberá 8 bolinhas.

Sistema de Medidas Decimais

Um sistema de medidas é um conjunto de unidades de medida que mantém algumas relações entre si. O sistema métrico decimal é hoje o mais conhecido e usado no mundo todo. Na tabela seguinte, listamos as unidades de medida de comprimento do sistema métrico. A unidade fundamental é o metro, porque dele derivam as demais.

Unidades de Comprimento						
km	hm	dam	m	dm	cm	mm
quilômetro	hectômetro	decâmetro	metro	decímetro	centímetro	milímetro
1000m	100m	10m	1m	0,1m	0,01m	0,001m

Há, de fato, unidades quase sem uso prático, mas elas têm uma função. Servem para que o sistema tenha um padrão: cada unidade vale sempre 10 vezes a unidade menor seguinte. Por isso, o sistema é chamado decimal.

E há mais um detalhe: embora o decímetro não seja útil na prática, o decímetro cúbico é muito usado com o nome popular de litro. As unidades de área do sistema métrico correspondem às unidades de comprimento da tabela anterior.

São elas: quilômetro quadrado (km²), hectômetro quadrado (hm²), etc. As mais usadas, na prática, são o quilômetro quadrado, o metro quadrado e o hectômetro quadrado, este muito importante nas atividades rurais com o nome de hectare (ha): $1 \text{ hm}^2 = 1 \text{ ha}$. No caso das unidades de área, o padrão muda: uma unidade é 100 vezes a menor seguinte e não 10 vezes, como nos comprimentos. Entretanto, consideramos que o sistema continua decimal, porque $100 = 10^2$.

Unidades de Área							
km²	hm²	dam²	m ²	dm ²	cm ²	mm ²	
quilômetro	hectômetro	decâmetro	metro	decímetro	centímetro	milímetro	
quadrado	quadrado	quadrado	quadrado	quadrado	quadrado	quadrado	
1000000m ²	10000m ²	100m ²	1m ²	0,01m ²	0,0001m ²	0,000001m ²	

Agora, vejamos as unidades de volume. De novo, temos a lista: quilômetro cúbico (km³), hectômetro cúbico (hm³), etc. Na prática, são muitos usados o metro cúbico e o centímetro cúbico. Nas unidades de volume, há um novo padrão: cada unidade vale 1000 vezes a unidade menor seguinte. Como 1000 = 10³, o sistema continua sendo decimal.

Unidades de Volume							
km³ hm³ dam³ m³ dm³ cm³ mm³							
quilômetro cúbico	hectômetro cúbico	decâmetro cúbico	metro cúbico	decímetro cúbico	centímetro cúbico	milímetro cúbico	
100000000m ³	1000000m ³	1000m³	1m³	0,001m³	0,000001m ³	0,00000001m ³	

A noção de capacidade relaciona-se com a de volume. Se o volume da água que enche um tanque é de 7 000 litros, dizemos que essa é a capacidade do tanque. A unidade fundamental para medir capacidade é o litro (I); 1l equivale a 1 dm³. Cada unidade vale 10 vezes a unidade menor seguinte.

Unidades de Capacidade							
kl	hl	dal	I	dl	cl	ml	
quilolitro	hectolitro	decalitro	litro	decilitro	centímetro	mililitro	
10001	1001	101	11	0,11	0,011	0,0011	

O sistema métrico decimal inclui ainda unidades de medidas de massa. A unidade fundamental é o grama.

Unidades de Massa							
kg	hg	dag	g	dg	cg	mg	
quilograma	hectograma	decagrama	grama	decigrama	centigrama	miligrama	
1000g	100g	10g	1g	0,1g	0,01g	0,001g	

Dessas unidades, só têm uso prático o quilograma, o grama e o miligrama. No dia-a-dia, usa-se ainda a tonelada (t): 1t = 1000 kg.

